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Abstract. A widely used method to estimate the accuracy of the nu-
merical solution of real life problems is the CESTAC Monte Carlo type
method. In this method, a real number is considered as an N-tuple of
Gaussian random numbers constructed as Gaussian approximations of
the original real number. This N-tuple is called a “discrete stochastic
number” and all its components are computed synchronously at the level
of each operation so that, in the scope of granular computing, a discrete
stochastic number is considered as a granule. In this work, which is part
of a more general one, discrete stochastic numbers are modeled by Gaus-
sian functions defined by their mean value and standard deviation and
operations on them are those on independent Gaussian variables. These
Gaussian functions are called in this context stochastic numbers and op-
erations on them define continuous stochastic arithmetic (CSA). Thus
operations on stochastic numbers are used as a model for operations on
imprecise numbers. Here we study some new algebraic structures induced
by the operations on stochastic numbers in order to provide a good al-
gebraic understanding of the performance of the CESTAC method and
we give numerical examples based on the Least squares method which
clearly demonstrate the consistency between the CESTAC method and
the theory of stochastic numbers.

Keywords: stochastic numbers, stochastic arithmetic, standard devia-
tions, least squares approximation.

1 Introduction

A widely used method to estimate the accuracy of the numerical solution of
real life problems is the CESTAC method, see for example [4,6,8,13,14,15,16,17].
In this method, real numbers are considered as vectors of N Gaussian random
numbers constructed to be Gaussian approximations of the same value. This
vector is called a “discrete stochastic number”. The CESTAC method has been
implemented in a software called CADNA in which discrete stochastic numbers
are computed one operation after the other. In other words all their compo-
nents are computed synchronously at the level of each operation so that, in the
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scope of granular computing [19], a discrete stochastic number is considered as
a granule. Moreover in CADNA the components of a the discrete stochastic
numbers are randomly rounded up or down with same probability to take into
account the rounding of floating point operators in the same way that directed
rounding is used in softwares implementing interval arithmetic. In this work,
which is part of a more general one, discrete stochastic numbers are modeled
by Gaussian functions defined by their mean value and standard deviation and
operations on them are those on independent Gaussian variables. These Gaus-
sian functions are called in this context “stochastic numbers” and operations
on them define continuous stochastic arithmetic (CSA) also called more briefly
stochastic arithmetic. Operations on stochastic numbers are used as a model
for operations on imprecise numbers. Some fundamental properties of stochastic
numbers are considered in [5,18]. Here we study numerically the performance of
the CESTAC method [1,2,3,10,11] using numerical examples based on the Least
squares method. Our experiments clearly demonstrate the consistency between
the CESTAC method and the theory of stochastic numbers and present one
more justification for both the theory and the computational practice.

The operations addition and multiplication by scalars are well-defined for
stochastic numbers and their properties have been studied in some detail. More
specifically, it has been shown that the set of stochastic numbers is a commuta-
tive monoid with cancelation law in relation to addition. The operator multipli-
cation by −1 (negation) is an automorphism and involution. These properties
imply a number of interesting consequences, see, e. g. [10,11].

In what follows we first briefly present some algebraic properties of the sys-
tem of stochastic numbers with respect to the arithmetic operations addition,
negation, multiplication by scalars and the relation inclusion. These theoretical
results are the bases for the numerical experiments presented in the paper.

2 Stochastic Arithmetic Theory (SAT) Approach

A stochastic number a is written in the form a = (m, s). The first component
m is interpreted as mean value, and the second component s is the standard
deviation. A stochastic number of the form (m; 0) has zero standard deviation
and represents a (pure) mean value, whereas a stochastic number of the form
(0; s) has zero mean value and represents a (pure) standard deviation. In this
work we shall always assume s ≥ 0. Denote by S the set of all stochastic numbers,
S = {(m; s) | m ∈ R, s ∈ R

+}. For two stochastic numbers (m1; s1), (m2; s2) ∈ S,
we define addition by

(m1; s1) + (m2; s2)
def
=

(
m1 + m2;

√
s2
1 + s2

2

)
, (1)

Multiplication by real scalar γ ∈ R is defined by:

γ ∗ (m1; s1)
def
= (γm1; |γ|s1). (2)
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In particular multiplication by −1 (negation) is

− 1 ∗ (m1; s1) = (−m1; s1), (3)

and subtraction of (m1; s1), (m2; s2) is:

(m1; s1)−(m2; s2)
def
= (m1; s1)+(−1)∗(m2; s2) =

(
m1 − m2;

√
s2
1 + s2

2

)
. (4)

Symmetric stochastic numbers. A symmetric (centered) stochastic number
has the form (0; s), s ∈ R. The arithmetic operations (1)–(4) show that mean
values subordinate to familiar real arithmetic whereas standard deviations induce
a special arithmetic structure that deviates from the rules of a linear space. If we
denote addition of standard deviations defined by (1) by “⊕” and multiplication
by scalars by “∗”, that is:

s1 ⊕ s2 =
√

s2
1 + s2

2, γ ∗ s1 = |γ|s1,

then we can say that the space of standard deviations is an abelian additive
monoid with cancellation, such that for any two standard deviations s, t ∈ R

+,
and real α, β ∈ R:

α ∗ (s ⊕ t) = α ∗ s ⊕ α ∗ t,

α ∗ (β ∗ s) = (αβ) ∗ s,

1 ∗ s = s,

(−1) ∗ s = s,√
α2 + β2 ∗ s = α ∗ s ⊕ β ∗ s.

Examples. Here are some examples for computing with standard deviations:

1 ⊕ 1 =
√

2, 1 ⊕ 2 =
√

5, 3 ⊕ 4 = 5, 1 ⊕ 2 ⊕ 3 =
√

14.

Note that s1 ⊕ s2 ⊕ ... ⊕ sn = t is equivalent to s2
1 + ... + s2

n = t2.

Inclusion. Inclusion of stochastic numbers plays important roles in applications.
Inclusion relation “⊆s” between two stochastic numbers X1 = (m1; s1), X2 =
(m2; s2) ∈ S is defined by [3]

X1 ⊆s X2 ⇐⇒ (m2 − m1)2 ≤ s2
2 − s2

1. (5)

Relation (5) is called stochastic inclusion, briefly: s-inclusion.

It is easy to prove [3] that addition and multiplication by scalars are (inverse)
s-inclusion isotone (invariant with respect to s-inclusion), that is

X1 ⊆ X2 ⇐⇒ X1 + Y ⊆ X2 + Y, X1 ⊆ X2 ⇐⇒ γ ∗ X1 ⊆ γ ∗ X2

3 The CESTAC Method

Suppose that some mathematical value r has to be computed with a numerical
method implemented on a computer. The initial data are imprecise and the com-
puter uses floating point number representation. In the CESTAC method a real
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number r, intermediate or final result, is considered as a Gaussian random vari-
able with mean value m and standard deviation σ that have to be approximated.
So r is a stochastic number.

In practice a stochastic number is approximated by an N -tuple with com-
ponents rj , j = 1, ..., N , which are empirical samples representing the same
theoretical value. As seen before, this vector is called discrete stochastic number.
The operations on these samples are those of the computer in use followed by
a random rounding. The samples corresponding to imprecise initial values are
randomly generated with a Gaussian distribution in a known confidence interval.

Following the classical rules of statistics, the mean value m is the best ap-
proximation of the exact value r and the number of significant digits on m is
computed by:

Cm = log10

(√
N |r|
σ τη

)
, (6)

wherein m = N−1 ∑N
j=1 rj , σ2 = (N − 1)−1 ∑N

j=1 (rj − m)2 and τη is the
value of Student’s distribution for k − 1 degrees of freedom and a probability
level p. Most of the time p is chosen to be p = 0.95 so that τη = 4.303. This
type of computation on samples approximating the same value is called Discrete
Stochastic Arithmetic (DSA).

It has been shown [5] that if one only wants the accuracy of r, i.e., its number
of significant decimal digits, then N = 3 suffices. This is what is chosen in
the software named CADNA [20] which implements the CESTAC method. But
if one wants a good estimation of the error on r then a greater value for N ,
experimentally at least N = 5 must be chosen. The experiments given below use
N = 5 and N = 20 showing that the two series of results are very close and that
a large value for N is unnecessary.

The goal of next section 4 is to compare the results obtained with Continu-
ous Stochastic Arithmetic (CSA) and the theory developed in this paper with
results obtained with the CESTAC method implementing Discrete Stochastic
Arithmetic (DSA).

It should be remarked that DSA which is used in the CESTAC method takes
into account round-off errors at the level of each floating point operation because
of the random rounding done at this level. On the contrary CSA is a theoretical
model in which data are imprecise but arithmetic operations are supposed exact.
This is why in our experiments relative errors on data are chosen to be of order
10−2–10−3 whereas the computations are done using double presision arithmetic.
Thus experiments on computer can be considered very close to the theoretical
CSA model.

4 Application: Linear Regression

As said before, in the CESTAC method, each stochastic variable is represented
by an N -tuple of gaussian random values with known mean value m and standard
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deviation σ. The method also uses a special arithmetic called Discrete Stochastic
Arithmetic (DSA), which acts on the above mentioned N -tuples.

To compare the two models, a specific library has been developed which im-
plements both continuous and discrete stochastic arithmetic. The computations
are done separately. The CSA implements the mathematical rules defined in Sec-
tion 2. The comparison has been done on the one-dimensional linear regression
method for numeric input data.

4.1 Derivation of a Formula for Regression

Let (xi, yi), i = 1, ..., n, be a set of n pairs of numbers where all xi are different,
x1 < x2 < ... < xn. As well-known the regression line that fits the (numeric)
input data (x, y), x = (x1, x2, ..., xn) ∈ R

n, y = (y1, y2, ..., yn) ∈ R
n, is

l : η = (Sxy/Sxx)(ξ − x) + y, (7)

wherein x = (
∑

xi)/n, y = (
∑

yi)/n (all sums run from 1 to n), and

Sxx =
∑

(xi − x)2 > 0, Sxy =
∑

(xi − x)(yi − y) =
∑

(xi − x)yi.

Note that that l passes through the point (x, y).
The expression in the right hand-side of (7) can be rewritten in the form:

L : η = (Sxy/Sxx)(ξ − x) + y

= (1/Sxx)
(∑

(xi − x)yi

)
(ξ − x) +

(∑
yi

)
/n

=
∑

((xi − x)(ξ − x)/Sxx + 1/n) yi.

Thus the line (7) can be represented in the form

l : η =
∑

γi(ξ) yi, (8)

wherein the functions

γi(ξ) = γi(x; ξ) = (xi − x)(ξ − x)/Sxx + 1/n, i = 1, 2, ..., n, (9)

depend only on x and not on y.
Since γi is linear, it may have at most one zero. Denoting by ξi the zero of

the linear function γi(ξ), we have

ξi = x + Sxx/(n(x − xi)), i = 1, ..., n. (10)

If xi = x, then γi = 1/n > 0.
In every interval [ξj , ξj+1] the signs of γi do not change and can be easily

calculated [9].
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Table 1. Results obtained with ε = 0, δ = 0.01

ui DSA 5 samples DSA 20 samples CSA CADNA
(0;ε) (2.98587;0.000930) (2.99719;0.009134) (3.00000;0.009591) 0.298E+001

(1.5;ε) (5.99914;0.003732) (6.00011;0.005948) (6.00000;0.006164) 0.599E+001
(2.5;ε) (8.00291;0.005348) (7.99994;0.006061) (8.00000;0.004690) 0.800E+001

4.2 Experiments

As said above, the results obtained with CSA and those obtained with the CES-
TAC method with N samples, i.e., with DSA have to be compared. Here the
successive values N = 5 and N = 20 have been chosen to experiment the effi-
ciency of the CESTAC method with different sizes of discrete stochastic numbers.
The CSA is based on operations defined on Gaussian random variable (m; σ).

The regression method (8) has been implemented with CSA and DSA. We
consider the situation when the values of the function yi are imprecise and
abscissas xi are considered exact.

For all examples presented below, we take the couples of values from the line
v = 2u + 3. The values chosen for abscissas are x1 = 1, x2 = 2, x3 = 2.5, x4 =
4, x5 = 5.5, and the values yi considered as imprecise are obtained as follows:

In the case of CSA they are chosen as y1 = (5; δ), y2 = (7; δ), y3 = (8; δ), y4 =
(11; δ), y5 = (14; δ) and δ is chosen as δ = 0.01.

In the case of the CESTAC method (DSA) the data for the yi are randomly
generated with Gaussian distributions whose mean values are the centers of the
above stochastic numbers and standard deviation δ.

From formula (8), three values of vi corresponding to three input values con-
sidered as imprecise ui = (0; ε); (1.5; ε); (2.5; ε) are computed with DSA and
with CSA and different values of ε. They are reported in tables 1–3.

The tables show that the mean values obtained with CSA are very close to
the mean values obtained with DSA.

Let us now call (mv; σv) the values provided by CSA for the above least
squares approximation at some point u.

CSA can be considered a good model of DSA if the mean value v of the
samples obtained at point u with the DSA is in the theoretical confidence interval
provided by CSA, in other words if:

mv − 2σv ≤ v ≤ mv + 2σv (11)

with a probability of 0.95. This formula can be rewritten as: −2σv ≤ v − mv ≤
+2σv, |v − mv| ≤ +2σv.

Table 2. Results obtained with ε = 0.01, δ = 0.01

ui DSA 5 samples DSA 20 samples CSA CADNA
(0;ε) (2.99372;0.021080) (3.00001;0.018596) (3.00000;0.032542) 0.29E+001

(1.5;ε) (5.99043;0.015064) (5.99956;0.024394) (6.00000;0.031702) 0.59E+001
(2.5;ε) (8.01482;0.017713) (7.99296;0.017689) (8.00000;0.031449) 0.80E+001
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Table 3. Results obtained with ε = 0.1, δ = 0.01

ui DSA 5 samples DSA 20 samples CSA CADNA
(0;ε) (2.76260;0.122948) (3.03062;0.213195) (3.00000;0.311120) Non significant

(1.5;ε) (5.86934;0.205126) (6.11816;0.179552) (6.00000;0.311033) 0.5E+001
(2.5;ε) (7.97106;0.219142) (8.07687;0.229607) (8.00000;0.311008) 0.7E+001
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Fig. 1. The dash line represents 2σv and the full line |v−mv|, the left figure is computed
with N = 5 and the right one with N = 20

The regression line has been computed with the previous data and ε = 0.01
and from u = 0.5 to u = 5.5 with a step of 0.1. Figure 1 shows the curves |v−mv|
and 2σvi for N=5 and N=20. On our samples formula (11) is always respected.

5 Conclusion

Starting from a minimal set of empirically known facts related to stochastic
numbers, we formally deduce a number of properties and relations. We inves-
tigate the set of all stochastic numbers and show that this set possesses nice
algebraic properties. We point out to the distinct algebraic nature of the spaces
of mean-values and standard deviations. Based on the algebraic properties of the
stochastic numbers we propose a natural relation for inclusion, called stochastic
inclusion. Numerical examples based on Lagrange interpolation demonstrate the
consistency between the CESTAC method and the presented theory of stochas-
tic numbers. This is one more justification for the practical use of the CADNA
software.
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